目录

全微分用于近似值计算和误差估计

发布于 2023/05/28 更新于 2023/05/28

作者 趣宽科技 码云上的源文件

在微积分中,函数在某点的全微分(total derivative)是指该函数在该点附近关于其自变量的最佳线性近似,与偏微分不同,全微分反映了函数关于其所有自变量的线性性近似,而非单个自变量。可用于复杂函数近似值的计算和误差估计。

H1

全微分

$$ \Delta u = f(x+h, y+k) - f(x,y) = hf_x(x, y) + kf_y(x, y) + \varepsilon\sqrt{h^2 + k^2} $$ \(\Delta u\)表示可微函数\(u=f(x,y)\)的增量的线性部分,我们称这个线性部分的函数为微分,有时称为全微分。并写成 $$ du = df(x,y) = \frac{\partial f}{\partial x}h + \frac{\partial f}{\partial y}k $$ $$ =\frac{\partial f}{\partial x}\Delta x + \frac{\partial f}{\partial y}\Delta y $$ \(du\)是函数的增量,其误差是\(\sqrt{h^2 + k^2}\)的\(\varepsilon\)倍, \(\varepsilon\)可任意小。因\(dx = \Delta x, dy = \Delta y\),所以通常写成: $$ df(x,y)=\frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy $$ 除非函数在上面定义的是可微的(偏导数不仅存在,而且是连续的),否则函数\(f(x,y)\)的全微分作为\(\Delta f\)的线性近似是没有意义的。

H1

二阶微分

$$ d^2f = d(df)=\frac{\partial}{\partial x}\Big(\frac{\partial f}{\partial x}h + \frac{\partial f}{\partial y} k\Big)h + \frac{\partial}{\partial y}\Big(\frac{\partial f}{\partial x}h + \frac{\partial f}{\partial y}k\Big)k $$ $$ =\frac{\partial^2 f}{\partial x^2}h^2+2\frac{\partial ^2 f}{\partial x \partial y}hk +\frac{\partial ^2 f}{\partial y^2}k^2 $$ 对于微分的计算 $$ d(fg) = fdg + gdf $$ 仍然成立,这可由乘积的微分法则立即得出。

H1

全微分用于近似值计算和误差估计

H2

例一

求下列函数的近似值: $$ f(x,y)=x^y=1.04^{1.98} $$ 我们在\((x,y)\)附近找一个新的点:\(x+h=1, y+k=2\), 那么\(h=-0.04, k=0.02\) $$ \Delta u = f(x+h, y+k) - f(x, y) $$ $$ = hf_x(x,y)+kf_y(x,y) $$ 由于\(f_x = yx^{y-1}, f_y=x^y\ln x\), 所以 $$ \Delta u = f(1,2) - f(x,y) = hf_x(x,y) + kf_y(x,y) $$ $$ = (-0.04) \cdot 2 \cdot 1 ^{2-1} + 0.02 \cdot 1^2 \ln 1 $$ $$ f(x+h, y+k) - f(x,y) =-0.08 \implies f(x,y) = f(x+h, y+k) + 0.08 $$ 所以 $$ f(x,y)=f(1,2) + 0.08 \approx 1.08 $$

H2

例二

求\(\log[(1.02)^{1/4} + (0.96)^{1/6} - 1]\)近似值

H3

将上述式子表示成函数\(f(x,y)\): $$ f(x,y) = \log(x^{1/4}+y^{1/6}-1)=\log[(1.02)^{1/4} + (0.96)^{1/6} - 1] $$ 分别求偏导数\(f_x, f_y\),令\(u=x^{1/4}+y^{1/6}-1\),那么: $$ f_x = \frac{d}{du}\log u\cdot \frac{\partial u}{\partial x} = \frac{1}{u}\cdot \frac{1}{4}x^{-3/4}=\frac{1}{4x^{3/4}(x^{1/4}+y^{1/6}-1)} $$ $$ f_y=\frac{d}{du}\log u\cdot \frac{\partial u}{\partial y} = \frac{1}{u}\cdot \frac{1}{6}x^{-5/6}=\frac{1}{6x^{5/6}(x^{1/4}+y^{1/6}-1)} $$ 令\(x+h=1, x+k=1\),那么\(h=-0.02, k = 0.04\),根据 $$ f(x+h, y+k) - f(x,y) = df(x,y)=\frac{\partial f}{\partial x}h + \frac{\partial f}{\partial y}k $$ $$ f(1, 1) - f(x,y) = f_x \cdot (-0.02) + f_y \cdot (0.04) $$ 用\(x+h,和 y+k\)代入\(f_x, f_y\)得到: $$ f(1, 1) - f(x,y) = \frac{1}{4} \cdot (-0.02) + \frac{1}{6} \cdot (0.04) $$ 所以 $$ f(x,y) \approx f(1,1) - \frac{1}{4} \cdot (-0.02) - \frac{1}{6} \cdot (0.04) \approx -\frac{1}{600} $$

H2

例三

已知直角三角形的底长\(x\)和高\(y\)分别包含误差\(h, k\),面积的可能误差是什么?

H3

根据三角形面积公式\(f(x,y) = \frac{xy}{2}\),那么误差\(du\) $$ du=df(x,y)=\frac{\partial f}{\partial x}h + \frac{\partial f}{\partial y}k $$ 因为\(f_x=\frac{y}{2}, f_y=\frac{x}{2}\),所以可能的误差\(du\): $$ du=\frac{y|h| + x|k|}{2} $$